1. Startup / Calibration

2. Technical Details

3. Where can I measure what?

4. Common problems

5. Service Connector

6. Contact
Easy Startup:

- **Check correct connection / installation**
- **Carry out automatic zero-adjustment in the menu**
- **Units and impuls-width selected according to order**

Detailed startup routine:

manual section 8
Connect impulses terminals 51 / 52 with 100Ω burden
Choose Service-level, Code 4000
Select correct meter size
Default Option -> destroy calibration
Submenu Driver
Current limit 350mA or 160mA (Eex)
Primary gain acc. Table
Ktqm = -0.451
Ktfreq = 0.24
Ki and kp according to table
Amplitude acc. table

Ensure FRAM – Converter use same data
Initialize FRAM (data) (in case of empty FRAM: error, restart)
Calibration

- Fix density-frequency pair 1 empty pipe (Submenu Density)
- Fix density-frequency pair 2 filled pipe (Submenu Density)
- Set zero AB (internal zero point)
- Submenu Flow
 - Tm calib. Zero -> do not touch
 - Tm calib span -> Temp. During calib.
 - Span Forward -> adjusting through calibration
 - Zero -> internal zero adjustment (min. 3 times)
 - Span Reverse -> add. Calib. Or as Span Forward
- Insert customer specific units etc.
1. Startup / Calibration

2. Technical Details

3. Where can I measure what?

4. Common problems

5. Service Connector

6. Contact
FCM2000 Technology

Cut-away model

PT 100 for temperature compensation

Inductive sensors generate large signal amplitudes
The name DSP-ELCO FCM2000

It is the name of the Electronic Converter

- **DSP:**
 - A Digital Signal Processor for excitation and data acquisition is implemented

- **ELCO:**
 - Electronic Converter
What is measured?

- **Directly measured values:**
 - Phase shift between the motion sensors
 - Pipe frequency
 - Temperature
 - Driver current

- **Calculated Values:**
 - Mass flow
 - calculated by help of phase shift and temperature
 - Density
 - calculated by help of pipe frequency and temperature
 - Volume flow
 - calculated by help of mass flow and density
 - Concentration (only Densi-Mass)
 - calculated by help of density and temperature
Coarse Block Diagram

Primary

Signal Conditioning

A/D

DSP-Part

Signal Processing:
- Data Acquisition Algorithm
- Excitation Algorithm

μ P-Part

- Flow calculation
- Menu system
- Communication
- I/O handling
- Error handling

I/O Interface

- Keyboard
- Display
- Current Outputs
- Pulse Output
- Contact Input
- Contact Output
- Communication

Power Supply

Secondary

A/D

D/A

© ABB Göttingen, -Wg - 10

www.plcworld.cn
Interconnection of the PCB´s

- Primary Trio Mass
 - 10 Sensorlines
 - 2 Driverlines

- Sensor A: 85(A+), 85(A-)
- Sensor B: 87(B+), 87(B-)
- Sensor C: 89(C+), 90(C-)
- PT100: 83(Ut+), 81(It+), 84(Utz), 82(ITz)
- Driver: 91(D+), 92(D-)

- FCM2000

- EEx protection Board (Only for Eex)

- Front End Board Trio-Mass
 - E870
 - SP-501741 (5xx)
 - BA500810

- DSP - up Board
 - E872
 - SP-501742 (3xx)
 - BA500816

- I/O Board
 - E878
 - SP-501745 (2xx)
 - BA500839

- Power Supply Board
 - E877
 - SP-501744 (1xx)
 - BA500835

- Electronic Converter
 - DSP-ELCO Eex-Integral Converter
 - InterConnection of the PCB’s

- "i", intrinsically safe
- "d", explosion proof
Electronic Converter

- The Converter is interchangeable without any recalibration (data stored in EEPROM)

- The Converter consists of 5 boards (+1 for Ex/FM)
 - Power Supply Board
 - High voltage version and low voltage version
 - I/O Board
 - Interface to the customer with 10 terminals
 - DSP-Board
 - Brain Board with 2 processors and digital signal processing
 - Front End Board
 - Interface to the primary
 - Display Board
 - Display and keyboard for the customer
 - EEx Board (Only for Ex/FM)
 - Ex/FM protection
Eex Board (FM-Certification)

Sensor A
Us = 50mV to 500mV
f = 50Hz to 500Hz

Driver

PT100

Sensor B
Us = 50mV to 500mV
f = 50Hz to 500Hz

Sensor C
Us = 50mV to 500mV
f = 50Hz to 500Hz

Zener Barrier

TrioMass Primary

"is", intrinsically safe

Ex Board (Optional)

Zener Barrier

Zener Barrier

Zener Barrier

Zener Barrier

explosion proof
Front End Board: Description

- Signal conditioning of the three sensor coils
 - Preamplifier
 - 10kHz Anti Alias Filter

- Signal conditioning of the temperature
 - PT100 in 4wire technique
 - 1mA current source

- Excitation for the driver coil
 - The DSP generates the driver signal by help of a DAC
 - max. voltage output signal: $\pm 13V_{ss}$
 - Software controlled driver enable/disable
 - Driver current measurement
 - Thermal shutdown
 - Driver current limitation
 - standard: max Driver Current=350mA; Pmax=13V*0,35A=4,5W
 - Ex/FM >DN10C :max Driver Current=160mA; Pmax=13V*0,16A=2,1W
 - Ex/FM <=DN10C: max Driver Current=100mA; Pmax=13V*0,10A=1,3W
Front End Board: Measurement Points

MP501 AGND1

5x9.1
85(A+) (1)
87(B+) (4)
89(C+) (7)
83(UT+) (11)
82(UT-) (12)

5x9.2
91(D+) (1)

5x3
-15V (20)
+15V (21)
+3VD3 (23)
+5VD (24)
+5VA (26)
-5VA (27)

5x3
AD_IN_A (29)
AD_IN_B (30)
AD_IN_C (31)
AD_IN_D (32)
Front End Board: Plot of the Sensor Signals

Sensor A+ 5x9.1 pin1
Sensor B+ 5x9.1 pin3
Sensor C+ 5x9.1 pin5
Front End Board: Plot of the ADC Inputs

- AD_IN_A 5x3 pin29
- AD_IN_B 5x3 pin30
- AD_IN_C 5x3 pin31

V_{rms}(1)=871.8mV V_{rms}(2)=648.9mV V_{rms}(3)=870.4mV
DSP-Board: Description

- 16-Bit fixed point DSP for signal processing
 - 33 MIPS (Million Instructions per second)
- 2 Simultaneous 14-Bit sampling ADC’s
 - Sensor A and sensor B are sampled simultaneous
 - Advantage: no sampling phase shift, additive errors are sampled simultaneous
 -> good change to figure it out
- 4M-Bit flash for storing the DSP and uP program
 - Software update via the service connector
- 16kBit FRAM for non volatile storing (internal data memory)
 - storing of the primary, converter and customer data
 - storing of the counter values
- Supervisor circuit for 3,3V and 5V power supply
- 3,3V Power supply on board
Display Board: Block Diagram

- 3 Key Keyboard+
- Read Relais
- 2*16 LCD Display
- External FRAM Pluggable Modul

4x5 (to the DSP Board)
Display Board: Description

- 3 Key keyboard
 - Operation without opening the housing by help of a magnetic pencil

- 2*16 LCD display
 - Illuminated

- External data memory
 - Pluggable module (like the XE)
 - 16kbit nonvolatile FRAM
I/O- Board: Block Diagram

- Contact Input: 2
- Contact Output: 2
- Current Output II passive: 3
- Current Output I Option: HART: 2
- Impuls Output activ / passiv: 1
- 2x4 (to the customer Terminals)
- 2x2 (to the DSP Board)
- 2x1 (to the Power Supply Board)

Power Connections:
- +24V
- AGND5
- +25V
- DGND2
- +5VD

© ABB Göttingen -Wg - 24
I/O-Board: Specification I

Current output 1: Active output
0 mA to 24 mA
560 Ohm maximum load

Current output 2: Passive output
Supply voltage 12 V to 30 V
3.25 mA to 22 mA
1000 Ohm maximum load

Supply Voltage [V] vs. Maximum Load [Ohm]
I/O-Board: Specification II

Pulse output:
Active or passive output (user selectable)
16 V - 30 V
220 mA maximum current
5000 Hz maximum frequency

Contact output:
Passive output
Supply voltage 16 V to 30 V
220 mA maximum current
500 Hz maximum frequency
output function is software programmable
Contact input: Passive input
Supply voltage 16 V to 30 V
input function is software programmable

HART: Superimposed on current output 1
1.2 mA current modulation
250 Ohm to 560 Ohm load
Frequency: 1200Hz / 2200Hz
Power Supply Board: Block Diagram

- ±5V
- +15V
- -15V
- +25V
- +24V
Power Supply Board: Specification

Power supply:

- **AC-high**
 - Input voltage: 85 V to 253 V
 - Input frequency: 47Hz to 64Hz

- **AC-low**
 - Input voltage: 16.8 V to 26.4 V
 - Input frequency: 47Hz to 64Hz

- **DC**
 - Input voltage: 16.8 V to 31.2V

Same pcb
Variants of the Electronic Converter

<table>
<thead>
<tr>
<th>No.</th>
<th>Power Supply</th>
<th>I/O-Board</th>
<th>EEx/FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC/DC Low</td>
<td>Standard</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>AC/DC Low</td>
<td>HART</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>AC-High</td>
<td>Standard</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>AC-High</td>
<td>HART</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>AC/DC Low</td>
<td>Standard</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>AC/DC Low</td>
<td>HART</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>AC-High</td>
<td>Standard</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>AC-High</td>
<td>HART</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Data Memory Management

- External Data Memory (pluggable Module)
- Internal Data Memory
- Flash
- Factory Delivery State
- Electronic Converter (Interchangeable)
- RAM
- uP
- Tastatur/Displa-Board
- DSP-Board

Secondary
Three different menu structures can be selected in the Program Level Menu:

- **Prog. Level Blocked**
 - Standard Menu, data cannot be entered

- **Prog. Level Standard**
 - Standard Menu with all customer specific entries required for operating the instrument available

- **Prog. Level Special**
 - Special Menu with the complete customer specific entries available

- **Prog. Level Service**
 - Additional values are displayed after the correct Service Code number has been entered
DSP: Advantage of the DSP

- Reduced Analog Hardware
 - only input amplifier, output amplifier and anti alias filter are analog
 - decreased temperature effects
 - decreased changing over the time

- Parts of the Analog Hardware are moved to the Software
 - Filter Algorithm (Possibility to design ideal filters)
 - Software PD-Controller

- Complex Algorithms are possible
 - e.g Fourier Transformation and Correlation

- No changing of the hardware to get another behavior
 - only the algorithms have to be changed

- Increasing of the self diagnostic
 - diagnostic of the installation
 - diagnostic of the primary
1. Startup / Calibration

2. Technical Details

3. Where can I measure what?

4. Common problems

5. Service Connector

6. Contact
Typical sensor data

- Typical resistance driver coil: ca. 10 - 40Ω
- Typical resistance sensor coils: ca. 90 Ω (A and B must have ca. equal value)

- Check M6 - M7
- Check S1 - S2
- Check S3 - S4
- Check S5 - S6
- Results in Ω not kΩ area.
- UT+ and UT- ca. 110 Ω
- IT+ and IT- ca. 110 Ω
- UT+ and IT+ ca. 0 Ω
- UT- and IT- ca. 0 Ω

With 3 X PT-100 (normally not in used)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IT+</td>
<td>95</td>
<td>IT- & UT- = 0 d</td>
</tr>
<tr>
<td>IT-</td>
<td>96</td>
<td>UT- & IT+ = 110 d</td>
</tr>
<tr>
<td>UT+</td>
<td>93</td>
<td>IT+ & IT- = 110 d</td>
</tr>
<tr>
<td>UT-</td>
<td>94</td>
<td>UT+ & IT+ = 220 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UT+ & UT- = 330 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UT+ & IT- = 330 d</td>
</tr>
</tbody>
</table>

Standard

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M7</td>
<td>M6 black</td>
</tr>
<tr>
<td>S1</td>
<td>red</td>
</tr>
<tr>
<td>S2</td>
<td>blue</td>
</tr>
<tr>
<td>S3</td>
<td>yellow</td>
</tr>
<tr>
<td>S4</td>
<td>green</td>
</tr>
<tr>
<td>S5</td>
<td>brown</td>
</tr>
<tr>
<td>S6</td>
<td>grey</td>
</tr>
<tr>
<td>IT+</td>
<td>violet</td>
</tr>
<tr>
<td>IT-</td>
<td>orange</td>
</tr>
<tr>
<td>UT+</td>
<td>violet or brown</td>
</tr>
<tr>
<td>UT-</td>
<td>orange</td>
</tr>
</tbody>
</table>

EEX

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M7</td>
<td>black (11)</td>
</tr>
<tr>
<td>M6</td>
<td>black (12)</td>
</tr>
<tr>
<td>IT+</td>
<td>black (4)</td>
</tr>
<tr>
<td>IT-</td>
<td>black (3)</td>
</tr>
<tr>
<td>UT+</td>
<td>black (2)</td>
</tr>
<tr>
<td>UT-</td>
<td>black (1)</td>
</tr>
<tr>
<td>S6</td>
<td>black (5)</td>
</tr>
<tr>
<td>S5</td>
<td>black (6)</td>
</tr>
<tr>
<td>S4</td>
<td>black (7)</td>
</tr>
<tr>
<td>S3</td>
<td>black (8)</td>
</tr>
<tr>
<td>S2</td>
<td>black (9)</td>
</tr>
<tr>
<td>S1</td>
<td>black (10)</td>
</tr>
</tbody>
</table>
Density correction

Submenu Instrument

- Submenu Primary Calibr.
- Output data

Submenu Database

Submenu Service connector

Rest

- Submenu Density
 - selection kFreg
 -_submenu Density
 -_submenu Flow

D Correction

F1 /20 °C empty

D1 (empty)

F2 /20 °C filled

D2 (filled)

new FCM2000 reading

D Correction = reading reference - reading FCM 2000

Enter

0,0000 kg/l

D Correction = reading reference - reading FCM 2000

Enter

0,01

0,00999 kg/l

feedback by FCM 2000

example reading reference 1,120 kg/l

eXample reading FCM 2000 1,110 kg/l

D Correction = reading reference - reading FCM 2000

Enter

0,01

0,120 kg/l
Density calibration on site

- **Conditions on site:**
 - Filled pipes
 - Stable temp.
 - Known density in the pipe
 - Data storage of original data

Flowchart

1. **Choose the service code area**
2. Code number 4000
 - Attention, you are in the Service Area!
3. Submenu Primary Calib.
4. Submenu Density
5. **Choose automatic and push enter to start the automatic frequency measurement**
6. **D2 (filled) 0.997633 kg/l**
7. Code number
 - Type in another number than 4000 to quit the service area
1. Startup / Calibration
2. Technical Details
3. Where can I measure what?
4. Common problems
5. Service Connector
6. Contact
Common Problems

- Installation problems:
 - Air in medium (gas phase, bubbles etc.)
 - Air must be avoided, maybe vertical installation
 - Increase backpressure (data sheet: at least 0.2 bar)
 - Check driver current and density – may not be stable (service code req.)
 - Medium might develop gas phase under certain conditions (no flow, high temp. etc.)
 - Turn meter 90° might help, if connect. Box was on top

- Process vibrations
 - Problem only in case of process noise = resonance frequency
 - Compensators for damping process noise, for all fittings and support of meter
 - Good support of meter directly in front and behind of fitting

- Process problems:
 - Piston pumps: creating noise at resonance frequency
 - Sedimentation: cleaning of meter might be required
 - Abrasion: flow velocity not more than 1 m/s (3.3 ft/sec), vertical installation
Common problems

- Electrical problems:
 - Ensure correct grounding of meter (primary and converter)
 - Check outputs with simulation mode
 - Impuls outputs: check jumper for active/passive (Ex: jumper on position active, although working as passive)
 - Faulty sensor amplitudes / reverse measurement / Temp. Measurement
 - Check sensor amplitudes on display (service code 4000 required)
 - Coils / PT100 may be broken -> Check resistance
 - Wrong values: meter must be sent to Göttingen factory
1. Startup / Calibration
2. Technical Details
3. Where can I measure what?
4. Common problems
5. Service Connector
6. Contact
Bootloader: Tasks and Advantages

Advantages in opposite to „normal“ eproms
- Very fast software update
- No replacement of the old eprom
- No additional hardware costs for a software update
- Update can sent via E-Mail

Tasks
- Load new converter programs into flash memory
- Start up the real converter program
- Store converter data and store process data
Boostrap: Before starting a Software Update

You need
- Computer with a terminal program (for example HyperTerminal)
- TTL-Box
- New converter program

You have to
- Connect the TTL-Box to the computer and to the service connector of the converter
- Start the terminal program with appropriate settings
Bootloader: Terminal Settings (HyperTerminal)

Eigenschaften von DSP ELCO

- Verbinden mit Einstellungen
- Verbinden über COM1
- Konfigurieren
- Landeskennzahl: Deutschland (43)
- Ortsteilwahl:
- Telefonnummer:
- Emulation: ANSI
- Zeilen im Bildlaufpuffer: 500
- Akustisches Signal beim Verbinden oder beim Trennen.
Bootloader: Terminal Settings (HyperTerminal)

possible Baudrates:
- 2400 bit/s
- 4800 bit/s
- 9600 bit/s
- 19200 bit/s
- 38400 bit/s
- 57600 bit/s
Power on the converter

Bootloader starts up and checks the service connector

TTL-Converter plugged in

No

Yes

Waiting for "Space"-Character while switching the baudrate

Bootloader start screen

Start converter program
Bootloader: Start Screen

*************** Fischer & Porter ***************

*** No software information available ! ***

Type for

Menu .. "M"
Start converter program "S"
Bootloader: new software

*************** Fischer & Porter ***************

Type for:

- Store new software into the converter "U"
- Display converter software information "I"
- Display bootloader and flash information "B"
- Start converter program "S"
- Reset converter "R"

© ABB Göttingen, Wg - 48
Bootloader: new software

*************** Fischer & Porter ***************

* Warning ! *
* *
* You will overwrite the actual software ! *
* Be sure to send the correct file to the converter. *
* *
* To cancel, press any key. *
* *

To save the file in the converter, send it via XModem.

CCCC
Bootloader: File Transfer Menu
Bootloader: File Transfer

Xmodem Dateiübersendung für DSP ELCO

- Senden: D:\mm4000.elco
- Paket:
- Fehlerprüfung: CRC
- Wdh.: 0 Wdh. gesamt: 0
- Letzter Fehler:
- Datei:
- Dauer bisher: 00:00:18 Restdauer: 00:00:04 Durchsatz: 21330 bps

Abbrechen cps/bps

Verbunden 0:18:30 ANSI 38400 8-N-1 RF GROSS NF Aufzeichnen Druckerecho
Bootloader: new software

*************** Fischer & Porter ***********************

**
* * *
* SUCCESS * *
* * The file was correctly stored in the converter! * *
* * *
**

Verbunden 2:13:27 ANSI 38400 8-N-1 RF GROSS NF Aufzeichnen Druckerecho
Bootloader: new software

*************** Fischer & Porter ***************

Type for:

Store new software into the converter "U"
Display converter software information "I"
Display bootloader and flash information "B"
Start converter program "S"
Reset converter .. "R"
Fischer & Porter

Software: MM4000
Version: D699F001U01
Revision: A.XX
Date: 22.04.1999
Bootloader: Check Flash

Type for:
- Store new software into the converter "U"
- Display converter software information "I"
- Display bootloader and flash information "B"
- Start converter program "S"
- Reset converter ... "R"
Bootloader and Flash Information

*************** Fischer & Porter ***************

ELCO-DSP-Bootloader information

Version : D699F002U01 Revision : A.00
Date : 21.04.1999
Checksum : *** O K ! ***

Flash information

Manufacturer : AMD
Device type : Am29DL400B T
Sector : 0 1 2 3 4 5
Protection : No No No No No
Hardware key : ED 53 22 42 DF

Verbunden: 1:20:20 | ANSI 38400 8-N-1 RF GROSS NF Aufzeichnen Druckerecho
Bootloader: Converter access

Keep pressed until converter shows Software version
Bootloader: Converter access

- Access converter through following keys:
 - „tab“, equ, to C/CE on converter
 - Arrow keys: up and down
 - Return key
 - Number keys

- Data storage:
 - First choose Transfer -> Capture Text
 - Choose in converter menu „output data“ variables to be stored
 - Start capture with „CTRL O“
DSP: Driver Algorithm

ADC

Sampled Values
Sensor Coil C

Mean average value (Istwert)
(corresponds to the mechanical amplitude)
=actual value
(Display:"I Driver+Amp C" "I Treiber+Amp C")

Nominal Value (Sollwert)
depending on the meter size
(menu:Driver ->"Amplitude")

DAC

Primary

Multiplier

PI Controller Algorithm

(menu: Driver-> "kp"
menu:Driver-> "ki"

Driver DSP Algorithm
DSP: Sensor Difference Algorithm

- ADC
- Sampled Values
 - Sensor Coil A
 - Sensor Coil B
 - Sensor Coil C

Band Pass Filtering
FIR-Filter
Data Reduction

Amp A = Amp B

Mean average value
Diff = A - B
Sum = A + B

Qm = k * Diff / Sum - AZ

k = Proportionality Constant
AZ = AutoZero
DSP: Sensor Multiplication Algorithm

ADC

Sampled Values
Sensor Coil A B C

Band Pass Filtering
FIR-Filter

Flow direction
Driver Coil D

Sensor Coil A

Sensor Coil B

Sensor Coil C

90° shifter

B

A

Mean average value
\(\text{Mul} = A \times \cos B \)

Mean average value
\(\text{Sum} = A + B \)

Qm = \(k \times \text{Mul} / \text{Sum} - \text{AZ} \)

k = Proportionality Constant
AZ = AutoZero

k=ProportionalityConstant
AZ=AutoZero
Appendix A: Design Documents

<table>
<thead>
<tr>
<th>Component</th>
<th>Standard</th>
<th>Leiterplatte</th>
<th>Bauanweisung</th>
<th>Schaltplan</th>
<th>ERP Code</th>
<th>Order Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschub U-Gross</td>
<td>HART RS_485 EEx EEx HART</td>
<td>D674A848U01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einschub 24V</td>
<td>HART RS_485 EEx EEx HART</td>
<td>D674A849U01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP Board</td>
<td></td>
<td>D685A956U03</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E872U01</td>
<td>BA-50-0816</td>
<td>SP-50-1742</td>
</tr>
<tr>
<td>Front End Board</td>
<td></td>
<td>D685A959U03</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E870U01</td>
<td>BA-50-0810</td>
<td>SP-50-1741</td>
</tr>
<tr>
<td>Power Supply Board</td>
<td>U-Gross EEx U-Gross EEx 24V</td>
<td>D685A971U03</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E877U01</td>
<td>BA-50-0835</td>
<td>SP-50-1744</td>
</tr>
<tr>
<td>I/O Board</td>
<td>Standard HART RS_485 EEx EEx</td>
<td>D685A972U04</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E896U01</td>
<td>BA-50-0839</td>
<td>SP-50-1745</td>
</tr>
<tr>
<td>EEx Board</td>
<td>Standard FM-Zulassung</td>
<td>D685A964U03</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E884U01</td>
<td>BA-50-0827</td>
<td>SP-50-1750</td>
</tr>
<tr>
<td>Displayplatte (XE)</td>
<td></td>
<td>D685A667U15</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E691U01</td>
<td>BA-50-0838</td>
<td>SP-50-1615</td>
</tr>
<tr>
<td>Backplane Board*</td>
<td>Standard EEx</td>
<td>D685A986U03</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E896U01</td>
<td>BA-50-0859</td>
<td>SP-50-1760</td>
</tr>
<tr>
<td>EMV Board*</td>
<td></td>
<td>D685A987U03</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E895U01</td>
<td>BA-50-0860</td>
<td>SP-50-1759</td>
</tr>
<tr>
<td>Baugruppe: EMV+Backplane</td>
<td></td>
<td>D682A009U01</td>
<td>EMV Board</td>
<td>Backplane Board</td>
<td>D685A987...</td>
<td>BA-50-0861</td>
<td></td>
</tr>
<tr>
<td>FRAM Board</td>
<td></td>
<td>D685A999U01</td>
<td>Leiterplatte</td>
<td>Bauanweisung</td>
<td>D358E892U01</td>
<td>BA-50-0848</td>
<td>SP-50-1758</td>
</tr>
</tbody>
</table>
Agenda

1. Startup / Calibration
2. Technical Details
3. Where can I measure what?
4. Common problems
5. Service Connector
6. Contact
Contact

- Norbert Jeske (service specialist)
 - Norbert.jeske@de.abb.com
 - Phone: +49 551 905 493

- Frank Frenzel (productmanager)
 - Frank.w.frenzel@de.abb.com
 - Phone: +49 551 905 389